9  9. tibbles and tribbles

9.1 Introduction to Tibbles

# Tibbles are part of the tibble package, which is included in tidyverse
# You can install/load tibble directly
if(!require(tibble)) {install.packages("tibble");require(tibble);}
Loading required package: tibble
# For more info see:
#
# help(package="tibble")

9.2 What are Tibbles?

Tibbles are a modern reimagining of R’s traditional data.frame. They are designed to make working with data frames easier and more consistent. Here’s how to create a basic tibble:

9.2.1 tibble() function is similar to data.frame() function

Create a tibble with the tibble function. It’s use is very similar to how you would use the data.frame function to create a dataframe (we’re assuming that you’re familiar with creating dataframes in R)

# Create a tibble directly
my_tibble = tibble(
  x = 1:3,
  y = letters[1:3],
  z = LETTERS[1:3]
)
my_tibble
# A tibble: 3 × 3
      x y     z    
  <int> <chr> <chr>
1     1 a     A    
2     2 b     B    
3     3 c     C    

9.2.2 as_tibble() to convert data.frame or matrix to a tibble

# convert a dataframe to a tibble

df = data.frame(
  numbers = 1:3,
  letters = c("a", "b", "c")
)

tbl = as_tibble(df)
tbl

# convert a matrix to a tibble

mat = matrix(seq(10,120,by=10), nrow=3,ncol = 4) 
tbl = as_tibble(mat)
tbl

9.3 Key Differences from data.frames

Tibbles have several important differences from traditional data.frames:

9.3.1 Default Printing Behavior

# Create a wide tibble with many columns 25 rows.

health_data = tibble(
  patient_id = sprintf("P%04d", 1:25),
  admit_date = as.Date("2024-01-01") + sample(0:30, 25, replace = TRUE),
  age = sample(18:95, 25, replace = TRUE),
  heart_rate = round(rnorm(25, 75, 10)),
  blood_pressure_sys = round(rnorm(25, 120, 15)),
  blood_pressure_dia = round(rnorm(25, 80, 10)),
  temperature = round(rnorm(25, 98.6, 0.5), 1),
  oxygen_saturation = round(rnorm(25, 98, 2)),
  cholesterol = round(rnorm(25, 190, 30)),
  glucose = round(rnorm(25, 100, 20)),
  weight_kg = round(rnorm(25, 70, 15), 1),
  height_cm = round(rnorm(25, 170, 10))
)

# Tibbles show only the first 10 rows by default
# and only columns that fit on screen
health_data
# A tibble: 25 × 12
   patient_id admit_date   age heart_rate blood_pressure_sys
   <chr>      <date>     <int>      <dbl>              <dbl>
 1 P0001      2024-01-08    60         80                131
 2 P0002      2024-01-04    70         66                141
 3 P0003      2024-01-24    81         64                118
 4 P0004      2024-01-02    64         73                108
 5 P0005      2024-01-05    63         74                114
 6 P0006      2024-01-12    22         62                123
 7 P0007      2024-01-16    89         65                123
 8 P0008      2024-01-04    78         73                102
 9 P0009      2024-01-22    44         64                129
10 P0010      2024-01-10    91         75                101
# ℹ 15 more rows
# ℹ 7 more variables: blood_pressure_dia <dbl>,
#   temperature <dbl>, oxygen_saturation <dbl>,
#   cholesterol <dbl>, glucose <dbl>, weight_kg <dbl>,
#   height_cm <dbl>
# Compare to data.frame which tries to print everything
as.data.frame(health_data)
   patient_id admit_date age heart_rate blood_pressure_sys
1       P0001 2024-01-08  60         80                131
2       P0002 2024-01-04  70         66                141
3       P0003 2024-01-24  81         64                118
4       P0004 2024-01-02  64         73                108
5       P0005 2024-01-05  63         74                114
6       P0006 2024-01-12  22         62                123
7       P0007 2024-01-16  89         65                123
8       P0008 2024-01-04  78         73                102
9       P0009 2024-01-22  44         64                129
10      P0010 2024-01-10  91         75                101
11      P0011 2024-01-12  80         55                124
12      P0012 2024-01-17  65         74                128
13      P0013 2024-01-21  83         70                119
14      P0014 2024-01-19  58         77                121
15      P0015 2024-01-13  46         53                119
16      P0016 2024-01-11  50         74                118
17      P0017 2024-01-26  67         80                 89
18      P0018 2024-01-12  18         97                137
19      P0019 2024-01-31  24         80                134
20      P0020 2024-01-28  33         75                129
21      P0021 2024-01-07  83         67                114
22      P0022 2024-01-03  54         86                123
23      P0023 2024-01-12  20         67                139
24      P0024 2024-01-23  73         79                125
25      P0025 2024-01-15  81         72                125
   blood_pressure_dia temperature oxygen_saturation
1                  73        98.2                96
2                  83        99.4                96
3                  89        98.2               100
4                  63        98.4                99
5                  73        99.2                94
6                  81        98.0               100
7                  70        99.2               101
8                  85        98.5                96
9                  81        98.6                98
10                 80        98.1                98
11                 82        98.1                98
12                 83        98.6                97
13                 88        97.7               100
14                 79        98.7               102
15                 94        98.9                96
16                 80        98.7                95
17                 89        98.8                97
18                 84        98.1                94
19                 73        98.3                99
20                 92        98.3                99
21                 74        99.2                94
22                 85        99.0                97
23                 81        98.2                97
24                 82        98.8               101
25                 75        98.7               102
   cholesterol glucose weight_kg height_cm
1          203      91      64.5       163
2          206      95      86.3       175
3          186     130      91.1       163
4          156      73      56.9       169
5          181     146     102.3       180
6          216      86      82.1       174
7          170     125      92.2       173
8          188     108      48.3       168
9          183      79      60.3       160
10         168      70      65.8       160
11         232      91      67.8       149
12         185      92      66.2       171
13         188      86      70.1       186
14         196     125      68.6       171
15         121     108      67.1       170
16         205     132      78.4       166
17         138     101      61.0       163
18         192     130      92.8       175
19         186     114      74.1       169
20         177      78      69.7       155
21         206     112      54.8       157
22         152     106      71.0       160
23         203      99      77.8       174
24         172     113      56.5       165
25         168      91      42.4       180

9.4 Printing More Rows/Columns of a Tibble

# By default, print() shows 10 rows. Use n= to show more rows
print(health_data, n = 20)  # Shows 20 rows
# A tibble: 25 × 12
   patient_id admit_date   age heart_rate blood_pressure_sys
   <chr>      <date>     <int>      <dbl>              <dbl>
 1 P0001      2024-01-08    60         80                131
 2 P0002      2024-01-04    70         66                141
 3 P0003      2024-01-24    81         64                118
 4 P0004      2024-01-02    64         73                108
 5 P0005      2024-01-05    63         74                114
 6 P0006      2024-01-12    22         62                123
 7 P0007      2024-01-16    89         65                123
 8 P0008      2024-01-04    78         73                102
 9 P0009      2024-01-22    44         64                129
10 P0010      2024-01-10    91         75                101
11 P0011      2024-01-12    80         55                124
12 P0012      2024-01-17    65         74                128
13 P0013      2024-01-21    83         70                119
14 P0014      2024-01-19    58         77                121
15 P0015      2024-01-13    46         53                119
16 P0016      2024-01-11    50         74                118
17 P0017      2024-01-26    67         80                 89
18 P0018      2024-01-12    18         97                137
19 P0019      2024-01-31    24         80                134
20 P0020      2024-01-28    33         75                129
# ℹ 5 more rows
# ℹ 7 more variables: blood_pressure_dia <dbl>,
#   temperature <dbl>, oxygen_saturation <dbl>,
#   cholesterol <dbl>, glucose <dbl>, weight_kg <dbl>,
#   height_cm <dbl>
# To see all rows
print(health_data, n = Inf)
# A tibble: 25 × 12
   patient_id admit_date   age heart_rate blood_pressure_sys
   <chr>      <date>     <int>      <dbl>              <dbl>
 1 P0001      2024-01-08    60         80                131
 2 P0002      2024-01-04    70         66                141
 3 P0003      2024-01-24    81         64                118
 4 P0004      2024-01-02    64         73                108
 5 P0005      2024-01-05    63         74                114
 6 P0006      2024-01-12    22         62                123
 7 P0007      2024-01-16    89         65                123
 8 P0008      2024-01-04    78         73                102
 9 P0009      2024-01-22    44         64                129
10 P0010      2024-01-10    91         75                101
11 P0011      2024-01-12    80         55                124
12 P0012      2024-01-17    65         74                128
13 P0013      2024-01-21    83         70                119
14 P0014      2024-01-19    58         77                121
15 P0015      2024-01-13    46         53                119
16 P0016      2024-01-11    50         74                118
17 P0017      2024-01-26    67         80                 89
18 P0018      2024-01-12    18         97                137
19 P0019      2024-01-31    24         80                134
20 P0020      2024-01-28    33         75                129
21 P0021      2024-01-07    83         67                114
22 P0022      2024-01-03    54         86                123
23 P0023      2024-01-12    20         67                139
24 P0024      2024-01-23    73         79                125
25 P0025      2024-01-15    81         72                125
# ℹ 7 more variables: blood_pressure_dia <dbl>,
#   temperature <dbl>, oxygen_saturation <dbl>,
#   cholesterol <dbl>, glucose <dbl>, weight_kg <dbl>,
#   height_cm <dbl>

9.4.1 Controlling Column Width

# width argument to print specifies the number of characters that should
# be printed in the widest row. In effect, this limits the number of columns
# being output to those columns that fit in the specified width.
print(health_data, width = 75)
# A tibble: 25 × 12
   patient_id admit_date   age heart_rate blood_pressure_sys
   <chr>      <date>     <int>      <dbl>              <dbl>
 1 P0001      2024-01-08    60         80                131
 2 P0002      2024-01-04    70         66                141
 3 P0003      2024-01-24    81         64                118
 4 P0004      2024-01-02    64         73                108
 5 P0005      2024-01-05    63         74                114
 6 P0006      2024-01-12    22         62                123
 7 P0007      2024-01-16    89         65                123
 8 P0008      2024-01-04    78         73                102
 9 P0009      2024-01-22    44         64                129
10 P0010      2024-01-10    91         75                101
# ℹ 15 more rows
# ℹ 7 more variables: blood_pressure_dia <dbl>, temperature <dbl>,
#   oxygen_saturation <dbl>, cholesterol <dbl>, glucose <dbl>,
#   weight_kg <dbl>, height_cm <dbl>
# Show all columns by setting width to Inf
print(health_data, width = Inf)
# A tibble: 25 × 12
   patient_id admit_date   age heart_rate blood_pressure_sys blood_pressure_dia temperature oxygen_saturation cholesterol glucose weight_kg height_cm
   <chr>      <date>     <int>      <dbl>              <dbl>              <dbl>       <dbl>             <dbl>       <dbl>   <dbl>     <dbl>     <dbl>
 1 P0001      2024-01-08    60         80                131                 73        98.2                96         203      91      64.5       163
 2 P0002      2024-01-04    70         66                141                 83        99.4                96         206      95      86.3       175
 3 P0003      2024-01-24    81         64                118                 89        98.2               100         186     130      91.1       163
 4 P0004      2024-01-02    64         73                108                 63        98.4                99         156      73      56.9       169
 5 P0005      2024-01-05    63         74                114                 73        99.2                94         181     146     102.        180
 6 P0006      2024-01-12    22         62                123                 81        98                 100         216      86      82.1       174
 7 P0007      2024-01-16    89         65                123                 70        99.2               101         170     125      92.2       173
 8 P0008      2024-01-04    78         73                102                 85        98.5                96         188     108      48.3       168
 9 P0009      2024-01-22    44         64                129                 81        98.6                98         183      79      60.3       160
10 P0010      2024-01-10    91         75                101                 80        98.1                98         168      70      65.8       160
# ℹ 15 more rows

9.4.2 Row Names

# data.frames can have row names
df_rownames = data.frame(
  x = 1:3,
  y = letters[1:3],
  row.names = c("row1", "row2", "row3")
)
df_rownames
     x y
row1 1 a
row2 2 b
row3 3 c
# Tibbles don't support row names
# If you convert a data.frame with row names to a tibble,
# the row names become a regular column called 'rowname'
as_tibble(df_rownames, rownames = "id")
# A tibble: 3 × 3
  id        x y    
  <chr> <int> <chr>
1 row1      1 a    
2 row2      2 b    
3 row3      3 c    

9.5 Creating Tibbles

You can create tibbles in several ways:

# Using tibble()
t1 = tibble(
  x = 1:5,
  y = x * 2,  # Note: you can refer to columns created earlier
  z = letters[1:5]
)
t1
# A tibble: 5 × 3
      x     y z    
  <int> <dbl> <chr>
1     1     2 a    
2     2     4 b    
3     3     6 c    
4     4     8 d    
5     5    10 e    

9.6 creating tibble row by row using tribbles

While reading the raw code for creating a dataframe or a tibble, it can be challenging to visualize what the actual dataframe/tibble will look like. This is because when typing the data into the code, each column is typed horrizontally instead of vertically. For example:

# Using tribble() for transposed input
# Useful for small, manual data entry
stuff = tribble(
  col1 = c("a",  "b",   "c"),
  col2 = c( 1,    2,     3)
  col3 = c(TRUE, FALSE, TRUE))

# The code above lays out columns horizontally. 
# The actual dataframe displays columns vertically.
stuff

A “tribble” (i.e. TRansposed tIBBLE) is just a different way of typing the code that becomes a tibble. Each column heading is prefixed with a tilde (~). The columns can be laid out vertically in the code, making the code much more readable. See the example below.

# Using tribble() for transposed input
# Useful for small, manual data entry
stuff = tribble(
  ~col1, ~col2, ~col3,
  "a",   1,     TRUE,
  "b",   2,     FALSE,
  "c",   3,     TRUE
)

# The following looks much more similar to the code that created it.
stuff

9.7 Converting Between Tibbles and data.frames

# Convert data.frame to tibble
df = data.frame(
  x = 1:3,
  y = letters[1:3]
)
tbl = as_tibble(df)

# Convert tibble back to data.frame
df_again = as.data.frame(tbl)

# Check classes
class(tbl)
[1] "tbl_df"     "tbl"        "data.frame"
class(df_again)
[1] "data.frame"

9.8 Other differences between tibbles and dataframes

9.8.1 Variable Names and Subsetting

# data.frames modify non-syntactic names
df_names = data.frame(
  `1` = 1:3,
  `2+2` = 4:6,
  check.names = TRUE  # default behavior
)
names(df_names)  # Names are modified
[1] "X1"   "X2.2"
# Tibbles preserve original names
tbl_names = tibble(
  `1` = 1:3,
  `2+2` = 4:6
)
names(tbl_names)  # Original names kept
[1] "1"   "2+2"
# Subsetting differences
# data.frame allows partial matching of variable names
df = data.frame(numbers = 1:3, letters = c("a", "b", "c"))
df$num  # Partial matching works
[1] 1 2 3
# Tibbles require exact matching
tbl = tibble(numbers = 1:3, letters = c("a", "b", "c"))
try(tbl$num)  # This will raise an error
Warning: Unknown or uninitialised column: `num`.
NULL